Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 1 7 3 2 0 1 8 6 4

CO-ORDINATED SCIENCES

0654/33

Paper 3 Theory (Core)

October/November 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 28 pages. Any blank pages are indicated.

1 (a) Reproduction is one of the characteristics of living things.

Complete the definition.

Reproduction is the process that makes more of the same kind of [1]

(b) Fig. 1.1 is a diagram of the male reproductive system in humans.

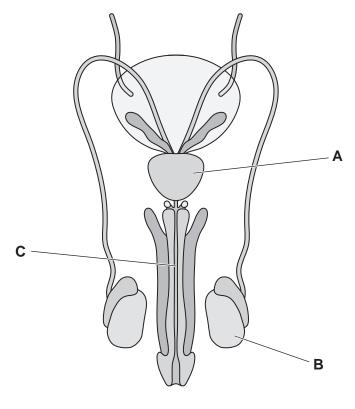


Fig. 1.1

The boxes on the left show the letters labelling some of the parts in Fig. 1.1.

The boxes on the right show functions of some of the parts.

Draw **one** line to link each letter to its function.

carries semen and urine out of the body

produces sperm

B

secretes fluid for sperm to swim in

transfers sperm to urethra

© UCLES 2023 0654/33/O/N/23

C

[3]

(c) Fig. 1.2 is a drawing of a sperm cell.

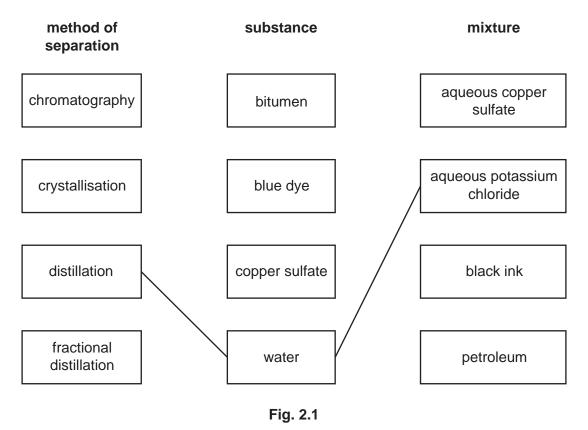
Label the cell structure that contains the genetic material with a label line and the correct name.

Fig. 1.2

(d)	State the names of two cell structures that are present in plant cells but not present in anima
	cells.

1	
2	
	[2]

[Total: 8]


[3]

[2]

2 (a) (i) There are different methods of separating mixtures.

Fig. 2.1 shows that distillation is used to separate water from aqueous potassium chloride.

Complete Fig. 2.1 to show how the **other three** substances are separated from the mixtures.

(ii) Name the solvent in aqueous copper sulfate.

.....

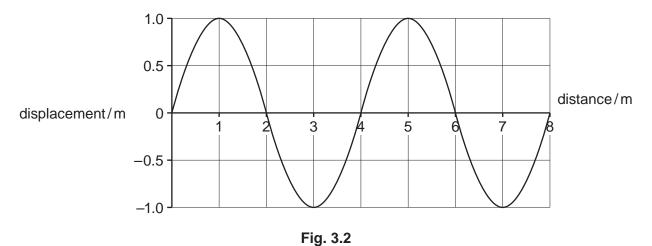
(iii) State **one** use for bitumen. [1]

(b) The treatment of a water supply uses filtration and chlorination.

Give a reason for using filtration and chlorination.

filtration

chlorination


(c)	Electrolysis is a process which uses electricity to break down a compound.
	For example, when molten lead bromide is electrolysed, lead and bromine are made.
	Complete the sentences about the electrolysis of lead bromide using words from the list.
	Each word may be used once, more than once or not at all.

bromine	cell	electrolyte	electrons	hydrogen	
ions	lead	molecules	negative	positive	
Molten lead bro	omide is calle	ed the		. because it contain	S
		which are free	to move.		
The		electrode	is called the catho	de	
and the		electro	ode is called the ar	node.	
		forms at the a	node and		
forms at the ca	thode.				
					[4]

[Total: 11]

	(i)	State the n	ame of the ele	ectromagnetion	radiation that o	causes sunbu	n.
	(ii)		electromagnet hown in Fig. 3		amed in 3(a)(i) ii	nto the incom	olete electromaç
			•	—— inci	reasing frequenc	су	
		X-rays			infrared		radio waves
				Fig.	3.1		
(b)	The	e man stands	s up. Pressure	e from his feet	t makes footprin	its in the sand	
(b)			•		•		
(b)	Sta	te the two q	uantities need	ded to calcula	te this pressure.		
(b)	Sta 1	te the two q	uantities need	ded to calcula	te this pressure.		
(b)	Sta 1	te the two q	uantities need	ded to calcula	te this pressure.		
	Sta 1 2	te the two q	uantities need	ded to calcula	te this pressure.		
	Sta 1 2	te the two questions and the two questions are the two questions	uantities need	ded to calcula	te this pressure.		
	Sta 1 2 The The	e man catche	es a beach ba	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		
	Sta 1 2 The	e man catche ball has a n	es a beach ba mass of 0.50 k	ded to calcula	te this pressure		

(d) Fig. 3.2 represents a water wave on the sea.

(i) Determine the wavelength of the wave.

wavelength = m [1]

(ii) Determine the amplitude of the wave.

amplitude = m [1]

- (e) A piece of glass has been left on the sand.

 The glass acts as a convex lens focusing the Sun's rays onto a piece of paper lying on the sand.
 - (i) Complete Fig. 3.3 to show the three rays of light focused on the paper at point X.

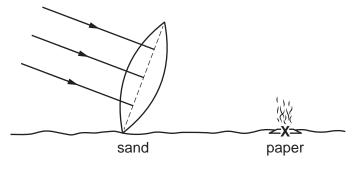


Fig. 3.3

[1]

(ii) The lens has a mass of 5.0 g and a volume of 2.0 cm³.

Calculate the density of the glass in the lens.

density = \dots g/cm³ [2]

[Total: 12]

4 (a) Scientists record the area of land that is cleared by deforestation every year.

Fig. 4.1 shows a bar chart of the results in one country.

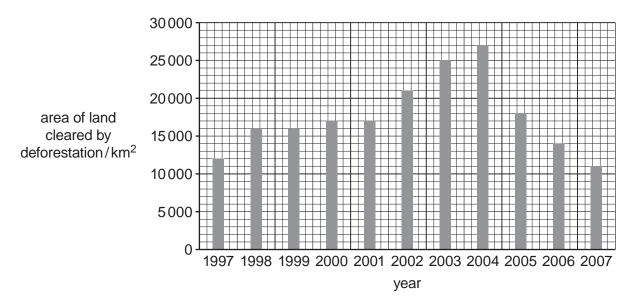


Fig. 4.1

(i) Calculate the percentage decrease in area cleared by deforestation between **2004** and **2007**.

Give your answer to the nearest whole number.

	area cleared by deforestation in 2004km²
	area cleared by deforestation in 2007 km ²
	percentage change% [3]
(ii)	The change in area cleared by deforestation between 1997 and 2004 affects carbon dioxide concentration in the atmosphere.
	Use ideas about the carbon cycle to explain why.

[Total: 10]

((iii)	Changes to the concentration of gases in the atmosphere is one undesirable effective deforestation.	ct of
		List three other undesirable effects of deforestation on the environment.	
		1	
		2	
		3	[3]
(b)		te two ways that living animals transfer carbon in the carbon cycle.	
	1		
	2		[2]

5 (a) Table 5.1 shows some information about three Group VII elements.

Complete Table 5.1.

Table 5.1

element	formula of molecules	colour	metal or non-metal?
bromine		orange	non-metal
chlorine			
iodine	I ₂	grey-black	

		[3]
(b)	State the name given to the Group VII elemen	nts in the Periodic Table.	
		[1]
(c)	An atom of one of the isotopes of iodine conta	ains 53 protons and 74 neutrons.	
	Some statements about iodine are shown bel	OW.	
	Place a tick (✓) to show the correct statement	s about iodine.	
	All iodine atoms contain 53 electrons.		
	All iodine molecules contain 148 neutrons.		
	The protons are found in the nucleus.		
	The neutrons are found in the nucleus.		[2]
(d)	Describe what is observed when aqueous silve and to aqueous potassium bromide.	er nitrate is added to aqueous potassium chloric	ek
	aqueous potassium chloride		
	aqueous potassium bromide		
]	 [2]

[Total: 10]

(e) A gas jar filled with air is placed on top of a gas jar filled with orange bromine vapour. After several hours, the bromine vapour has mixed with the air.

This is shown in Fig. 5.1.

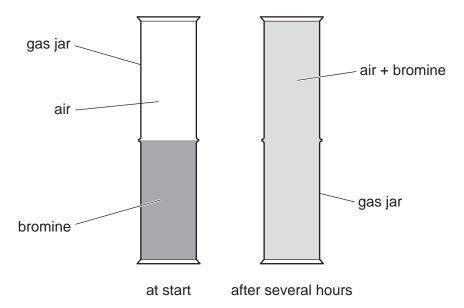


Fig. 5.1

Use ideas about the movement of molecules in your answer.	
	[2

© UCLES 2023 0654/33/O/N/23

Explain why the bromine mixes with the air.

6 (a) Fig. 6.1 shows a double electric hotplate used to heat food.

Fig. 6.1

Fig. 6.2 shows the circuit diagram for the hotplates.

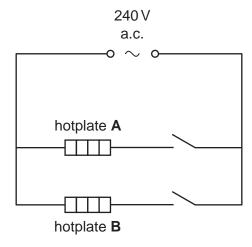


Fig. 6.2

Hotplate **A** and hotplate **B** are identical and are connected to a 240 V a.c. supply. Each hotplate has a resistance of $40\,\Omega$.

(i) Calculate the current in hotplate A.

[Total: 11]

(iii)	Circle the shown in F		ue for the cor	nbined resist	ance of the two hotpl	ates connected as
		20 Ω	40Ω	80Ω	1600Ω	
	Explain you	ır answer.				
	explanation	١				
						[2]
(b) A st	eel saucepa	ın containin	g water is pla	ced on one o	f the hotplates as sho	own in Fig. 6.3.
	steel sa	ucepan —		<u> </u>	wate	er
		hotplate -				
			Fi	g. 6.3		
(i)	saucepan.				ansferred through the	
						[1]
(ii)			m of the sauc ucepan is war	•		
	-		ws to show ho rawn for you.		d water circulates aro	und the saucepan. [1]
(iii)	As the water	er in the sau	ucepan is hea	ited, some of	the water evaporates	S.
	Choose wo	ords from the	e list to comp	lete the sente	ences to describe eva	poration.
botton	n de	ensity	energy	mass	middle	surface
	Water mole	ecules esca	pe from the		0	f the liquid.
	Only the wa	ater molecu	les with the g	reatest		escape. [2]
(iv)	Eventually	the water b	oils as it reac	hes the boilin	g point of water.	
	State the b	oiling point	of water.			
			boiling poir	nt of water = .		°C [1]
(v)	While the v	vater boils, t	the hotplate o	continues to h	eat the water in the s	aucepan.
	State what	happens to	the temperat	ture of the wa	ater when it is boiling.	
						[1]

7 (a) Enzymes are only active within a specific pH range.
 Table 7.1 shows the specific pH range for five different enzymes.

Table 7.1

enzyme	pH range enzyme is active
Α	1–5
В	5–9
С	7–12
D	2–3
E	10–12

	magnesium nitrog		1]
	calcium carbon	chlorine hydrogen	
	Circle the elements that all enzymes contain	n.	
(c)	Enzymes are proteins.		
		[1]
(b)	State one factor, other than pH, that affects e	enzyme activity.	
	active at pH8.	[3	3]
	active over the widest range of pH values		
	only active in acidic conditions		
	Identify the enzyme(s) from Table 7.1 that are	ə:	

(d) Table 7.2 lists some large nutrient molecules and the smaller molecules from which they are made.

Complete Table 7.2.

Table 7.2

large nutrient molecule	smaller molecules that nutrients are made from
large nathern molecule	Smaller molecules that nutrients are made nom
fats and oils	fatty acids and
proteins	
1. starch	
2	

[4]

(e) Digested nutrients are absorbed by the body.

Place ticks (✓) in the boxes to show **two** correct statements about absorption.

involves the breakdown of insoluble molecules to soluble molecules	
involves movement of digested food molecules into the blood	
involves movement of insoluble food molecules into cells	
occurs across the wall of the liver	
occurs across the wall of the intestine	

[2]

[Total: 11]

8 (a) Fig. 8.1 shows the apparatus a student uses to investigate the rate of reaction between magnesium and dilute hydrochloric acid.

Hydrogen gas is collected in the measuring cylinder. The other product is aqueous magnesium chloride.

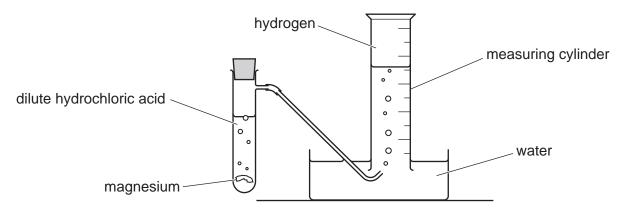


Fig. 8.1

(i) Construct the word equation for this reac	tion.
---	-------

+	·	→+	·
			[2]

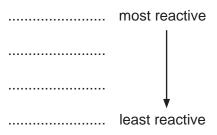
(ii) State **two** changes to the reaction conditions that increase the rate of reaction.

1	
2	
_	[2]

(iii) The reaction between magnesium and dilute hydrochloric acid is exothermic.

State the meaning of exothermic.

۲4
 ĮΙ


(iv) The student repeats the experiment using three different metals, copper, iron and calcium.

The observations are shown in Table 8.1.

Table 8.1

metal	observation
copper	does not react
iron	reacts slowly
calcium	reacts rapidly
magnesium	reacts moderately

Place the four metals in order of their reactivity from the most reactive to the least reactive.

[1]

(b) Table 8.2 shows information about the four metals in a magnesium alloy.

Table 8.2

element	percentage by mass in the alloy/%
aluminium	9.0
magnesium	
manganese	1.0
zinc	1.0

(i) Calculate the percentage of magnesium contained in the alloy.

percentage of magnesium = % [1]

(ii) Calculate the mass of aluminium contained in 20 kg of the alloy.

mass of aluminium = kg [1]

(iii) Suggest why, apart from cost, this alloy of magnesium is used rather than pure magnesium for making parts for car engines.

[41]

[Total: 9]

(b) Nu Sta		Fig. 9.1 generate electricity in a nuclear fu	
(b) Nu Sta	ydroelectric (HEP) nuclear wind clear fuels are used to g	generate electricity in a nu	unreliable uses energy from falling water uses energy from inside the Earth
(b) Nu Sta	nuclear wind	generate electricity in a nu	uses energy from falling water uses energy from inside the Earth uclear power station.
Sta	wind wind clear fuels are used to g	generate electricity in a nu	uses energy from inside the Earth
Sta	clear fuels are used to g	generate electricity in a nu	uclear power station.
Sta		generate electricity in a nu	uclear power station.
Sta		•	uclear power station.
	te the name of the prod	ess by which a nuclear fu	uel produces heat.
 (c) Plu			
(c) Plu			
. ,	tonium-239 is an exam	ole of a nuclear fuel.	
Plu	tonium-239 has the nu	clide notation ²³⁹ Pu.	
De	ermine the number of r	neutrons in one atom of p	olutonium-239.
(d) (i)	Plutonium-239 decays	• •	
	Write the word equation	on for this decay process	3.
(ii)			

(e)	α -particles, β -particles, and γ -radiation are three	e radioactive emissions.
	Place the three emissions in order of their ionis	ing ability.
	most ionising —	─────────────────────────────────────
		ניז
		[Total: 8]

10 (a) Fig. 10.1 is a diagram of a cross-section through a leaf.

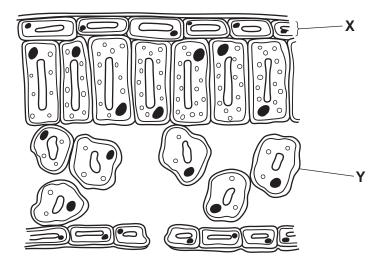


Fig. 10.1

(i)	State the name of the	part labelled X	and the cell	labelled Y in	Fig. 10.1
\''	Otato the hame of the	part laboriou X		iabolica i ili	1 19. 10.1

part X	
cell Y	
	[2]

- (ii) Draw one arrow on Fig. 10.1 to show the pathway of water vapour during transpiration. [1]
- (b) Fig. 10.2 is an incomplete sketch graph.

Complete Fig. 10.2 to show the effect of humidity on the rate of transpiration by:

- including axis labels
- drawing a line to show the trend.

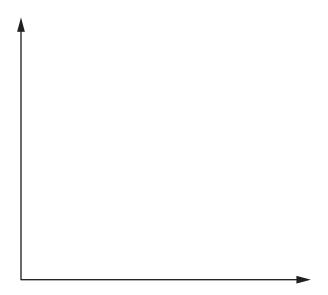


Fig. 10.2

[Total: 11]

(c)	Stat	te the name of the type of plant cell that absorbs water from the soil.	
			[1]
(d)	Stat	te the name of the plant tissue that transports water from the roots to the leaves.	
			[1]
(e)	Sug	gest one reason why not all the water absorbed is lost through transpiration.	
			[1]
(f)	Bloo	od has several functions including transport in humans.	
	(i)	State one function of white blood cells.	
			[1]
	(ii)	State two other main components of blood.	
		1	
		2	
			[2]

11	(a)	Sodium forms a basic oxide. Carbon forms acidic oxides.
		State why they are different.
		[1]
	(b)	Carbon is a solid and carbon dioxide is a gas.
		Describe the differences between a solid and a gas using ideas about particle separation and particle motion.
		particle separation
		particle motion
		[2]
	(c)	Diamond is one form of carbon. Fig. 11.1 shows the arrangement of carbon atoms in diamond.
		Fig. 11.1
		Circle) two words from the list to describe the structure and bonding in diamond.
	si	mple giant metallic ionic covalent polymer

(d) (i) Sodium metal reacts with chlorine gas to make sodium chloride.

Balance the symbol equation for this reaction.

......Na +
$$Cl_2 \rightarrow$$
Na Cl

(ii) During the reaction sodium atoms form sodium ions, Na⁺, and chlorine atoms form chloride ions, C*l*⁻.

Fig. 11.2 shows the electronic structure of a sodium ion and a chloride ion.

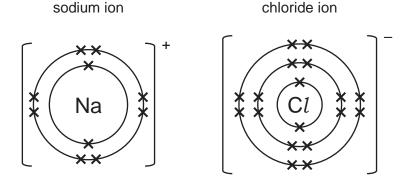


Fig. 11.2

Write down the electronic structure of a sodium **atom** and a chlorine **atom**.

sodium atom	
chlorine atom	
	[2]

(iii) Sodium and lithium are both in Group I of the Periodic Table.

Sodium reacts violently with water.

Describe the reaction of lithium with water.

Describe the trend in the reactivity of Group I elements as shown by sodium and lithium.

explanation

[Total: 10]

[2]

12 (a) Fig. 12.1 is a distance—time graph for two cyclists **A** and **B** who are racing for a distance of 1000 m.

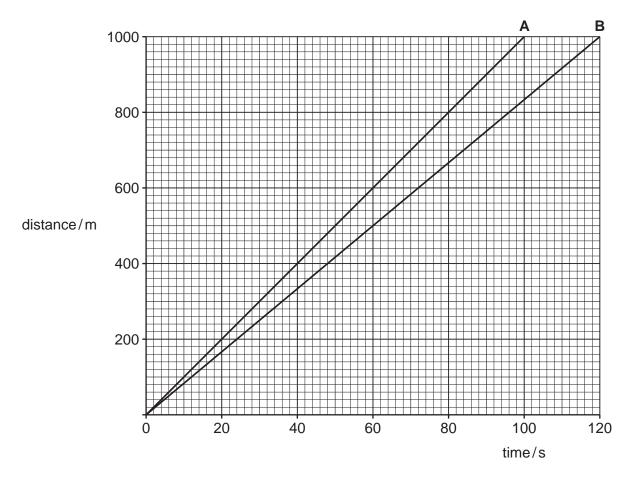


Fig. 12.1

(i) Calculate the time difference over the 1000 m for cyclist A compared to cyclist B.

(ii) Calculate the speed of cyclist B.

(iii) Describe how the graph shows that cyclist **B** moves at a constant speed.

(b) (i) Fig. 12.2 shows a cyclist moving along a flat road.

Fig. 12.2

Choose words or phrases from the list to complete the sentence. Each word or phrase may be used once, more than once or not at all.

chemical	potential	elastic potential	gravitational potential	kinetic
	As the cyclist's sp	peed increases, the	er	ergy in the
	cyclist's body dec	reases and the	energ	y of the cyclist
	increases.			[2]
(ii)	As the cyclist ride	es along the road, the temp	perature of the air in the tyres	increases.
	Describe the char	nge in the motion of the ai	r molecules.	
				[1]

[Total: 9]

(c) The cyclist has a tyre puncture and needs to remove the wheel. Fig. 12.3 shows the wheel nut that must be unscrewed.

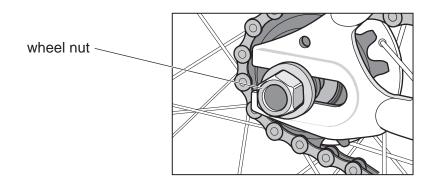


Fig. 12.3

The cyclist has two spanners **X** and **Y** which can be used to unscrew the wheel nut.

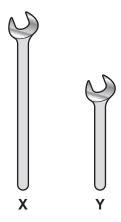


Fig. 12.4

Fig. 12.4 shows the two spanners.

Explain why spanner X will unscrew the wheel nut more easily than spanner Y .												
	[2											

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	He	nelium 4	10	Ne	neon 20	18	Ā	argon 40	36	Ż	rypton 84	54	Xe	xenon 131	98	Rn	radon -			
	=				6	ш_	fluorir 19	17	Ö	chlorine 35.5	35	Ā	bromi 80	53	Ι	iodin 127	85	¥	astatii			
	>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>е</u>	tellurium 128	84	Ъо	polonium	116	_	livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	2				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium
	≡				2	Δ	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204			
											30	Zu	zinc 65	48	S	cadmium 112	80	Hg	mercury 201	112	S	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
dno											28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Group											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ï	iridium 192	109	₹	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	£	hassium -
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
						loc	SS				24	ö	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	Б	tantalum 181	105	<u>а</u>	dubnium -
					· co	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium —
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ва	barium 137	88	Ra	radium
	_				3	<u></u>	lithium 7	- 1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ.	francium —

Lu Lu	lutetium 175	103	۲	lawrencium	I
% Q	ytterbium 173	102	2	nobelium	ı
e9 L	thulium 169	101	Md	mendelevium	1
₈₈ Ё	erbium 167	100	Fm	fermium	I
67 H	holmium 165	66	Es	einsteinium	I
% <u>Q</u>	dysprosium 163	86	ర	californium	ı
e5 Tb	terbium 159	26	Ř	berkelium	ı
64 Gd	gadolinium 157	96	Cm	curium	1
e3 Eu	europium 152	92	Am	americium	1
Sm	samarium 150	94	Pn	plutonium	1
Pm	promethium —	93	ď	neptunium	1
9 P	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce SS	cerium 140	06	드	thorium	232
57 La	lanthanum 139	68	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).